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Abstract
Single-particle motion and self-diffusion in a two-dimensional dusty plasma are
investigated by molecular dynamic simulation. The velocity autocorrelation
function indicates that the single-particle motion is strongly coupled to the
collective motion in the dusty plasma when the coupling parameter is high
enough. The point defects play an important role in the particle self-diffusion
process. A simple point defect motion model is developed to explain the
mechanism of self-diffusion and estimate the self-diffusion coefficient in the
dusty plasma. The value of the self-diffusion coefficient calculated by using
the model is in agreement with the result obtained from mean square
displacement for a two-dimensional dusty plasma crystal.

PACS numbers: 82.70.Dd, 52.25.Vy

1. Introduction

The dynamical behaviour of dusty plasma has recently attracted the special attention of
the scientists studying dusty plasma [1–13]. The transport coefficients such as thermal
conductivity, viscosity and self-diffusion in dusty plasma are investigated. Salin and Caillol
[1] calculate the thermal conductivity, shear viscosity and bulk viscosity in an equilibrium
one-component plasma (OCP) by molecular dynamic (MD) computations. Donko and Nyiri
[2] obtain the thermal conductivity and shear viscosity for a non-equilibrium one-component
plasma system. Ohta and Kremer [3, 14–16] calculate the self-diffusion coefficient in a
Yukawa fluid by molecular dynamic simulation. Tankeshwar [6] proposes a simple model
for the calculation of self-diffusion in a fluid. However, in a dusty plasma crystal with point
defect, the self-diffusion has not been studied in detail by molecular dynamic simulation. The
self-diffusion coefficient is one of the most fundamental dynamical parameters that reflects
the nature of interparticle potentials and characterizes the thermodynamics of the system. The
effect of a point defect on the self-diffusion process is important in the dusty plasma. In this
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paper, we intend to study the single-particle motion and self-diffusion in a two-dimensional
(2D) dusty plasma crystal with point defects, and explain the mechanism of self-diffusion and
estimate the self-diffusion coefficient in the dusty plasma.

We consider a dusty plasma system, a collection of identical particles of mass M and
charge Q, immersed in a neutralizing background plasma. The interparticle interaction
potential is assumed to be the screened Coulomb potential: φ(r) = (Q2/4πε0r) exp(−r/λD),
where r is the distance between two particles and λD is the screening length of the background
plasma. The thermodynamics of the system can be characterized by two dimensionless
parameters: κ = a/λD, i.e., the ratio of the average interparticle distance a to the screening
length and the coupling parameter � = Q2/(4πε0akBT ), where T is the system temperature.

Our simulations were performed in a canonical ensemble; the Nosé–Hoover thermostat
scheme [17] is used to keep the system at constant temperature. The calculations were
performed on a system of 256 particles in a square box with periodic boundary conditions.
The time step is 0.1ω−1

pd , where ωpd =
√

Q2/ε0Ma3 is the dusty plasma frequency. Usually,
the initial runs last about 3 × 104 steps for equilibration, and in subsequent 2 × 104 time
steps, the velocity autocorrelation function (VAF) and mean square displacement (MSD) are
computed. In this paper, we use an experimentally related value of κ = 1.

The velocity autocorrelation function Z(t) and mean square displacement 〈r2(t)〉 are
defined by

Z(t) =
〈∑N

i=1 �vi(t) · �vi(0)
〉

〈∑N
i=1 �vi(0) · �vi(0)

〉 (1)

〈r2(t)〉 =
〈

1

N

N∑
i=1

(�ri(t) − �ri(0))2

〉
(2)

where 〈· · ·〉 indicates thermal average, N is the number of simulation particles and �ri(t) and
�vi(t) are the position and velocity of the ith particle at time t, respectively.

The Fourier transformation of Z(t) gives the spectrum function

Z̃(ω) = 1

2π

∫ ∞

−∞
Z(t) exp(−iωt) dt . (3)

For a two-dimensional system, the particle self-diffusion coefficient can be calculated by

D = lim
t→∞

〈r2(t)〉
4t

. (4)

2. Simulation results

The single-particle motion of a many-body system is usually investigated by the VAF.
Figure 1(a) shows the normalized VAFs at different coupling parameters. Figure 1(b) shows
the spectrum functions of the corresponding VAFs. In figure 1, one can see that at � = 2.5,
the VAF rapidly decays to zero with very weak oscillation, and the spectrum function is only a
broadened peak at zero frequency. This indicates that the single-particle motion is only thermal
diffusion motion. When � increases to 10, VAF begins to exhibit decay oscillations; and a peak
appears at the frequency of 0.98ωpd, indicating that the single-particle motion has a vibration
mode in addition to the diffusion mode. With the increase of �, the oscillations become
more and more evident. The oscillation frequency is close to the dusty plasma frequency
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Figure 1. (a) The normalized VAFs at different coupling parameters. (b) The spectrum functions
of the corresponding VAFs.

ωpd, indicating that the single-particle motion is strongly coupled to the collective motion.
At � � 100, the oscillation frequency shifts to 0.825ωpd, and a new small peak appears at a
lower frequency of 0.295ωpd, meanwhile the diffusion peak at zero frequency disappears. The
appearance of the low-frequency peak indicates that a new motion mode is involved in this
case. Usually, when � increases to 100, the dusty plasma begins to freeze. When the dusty
plasma freezes to a solid, a transverse collective mode will be excited. Schmidt [12] and Ohta
et al [3, 13] have investigated the transverse excitation in a strongly coupled one-component
plasma with molecular dynamics simulation, and the broad low-frequency peak is due to the
appearance of transverse collective modes. In the above simulations, the sample is composed
of 256 particles. As is known for particle systems with other potentials, the numerical results
depend on the simulation particle number N [18]. In order to observe the dependence of the
oscillation frequency on the finite size of the sample (namely, the particle number N), the
simulations are performed again with N = 625 and 900, respectively, for several � values.
For example, when � = 1000 and � = 100, the corresponding high oscillation frequency
peaks appear at 0.825ωpd, 0.826ωpd and 0.826ωpd for the cases of N = 256, 625 and 900,
respectively, whereas the low-frequency peaks are always located at 0.295ωpd for the three
cases. From the above results, one can see that the oscillation frequencies do not depend
obviously on the simulation particle number N in the calculation accuracy, so in order to save
computer time the particle number N = 256 is sufficient for the simulations. In the following
simulations, the samples are all composed of 256 simulation particles.

In order to study self-diffusion in the two-dimensional dusty plasma, MSDs are
investigated for different coupling parameters for a long time t ∼ 2200ω−1

pd . Figure 2 shows
the MSDs for different coupling parameters. In figure 2, one can see that with increasing
coupling parameter, the MSD obviously decreases. When � = 100, 200 and 300, there are
two relaxation time scales. On the time scale of t < 250ω−1

pd , the MSD shows ballistic

behaviour with 〈r2(t)〉 ∝ t2, and on the time scale of t � 250ω−1
pd , the MSD shows diffusive

behaviour with 〈r2(t)〉 ∝ t . When � = 1000, the MSD increases linearly with time. When
� = 5000, the MSD almost does not increase with time and exhibits an oscillatory character.
These results for the cases of � = 100, 200, 300 and 1000, as shown in figures 3 and 4, are
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Figure 2. The MSDs with time at different coupling parameters.

Figure 3. Particle locations and nearest-neighbour bonds at (a) � = 100, (b) � = 1000 and (c) � =
5000, respectively.

Figure 4. Particle configurations for two moments, where the hexagons indicate the point defects,
the grey circles denote the moved particles and the arrows indicate the directions of motion of the
moved particles.

due to the fact that the point defects exist and continually move from one location to another
in the dusty plasma, and the particles are affected greatly by the point defect motion, so the
particles also move from one place to another, and the particle MSDs increase gradually with
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Figure 5. Particle locations and nearest-neighbour bonds for two moments (a) t1 = 0 and
(b) t2 = 106.2ω−1

pd , respectively, with � = 1000.

time. For the case of � = 5000, there is no point defect in the crystal, and the crystal is
a perfect lattice, where every particle is confined near its equilibrium position and vibrates
around this position, and the particle MSD almost does not increase with time and exhibits an
oscillatory character. Otherwise, in the crystal with � = 1000, the number of point defects is
much less than in the cases of � = 100, 200 and 300, so the MSD for � = 1000 is also much
lower than in the other cases. From the above discussion, one can conclude that the point
defects really play an important role in the self-diffusion process for the two-dimensional
dusty plasma. Otherwise, for the lower coupling parameters, such as � = 100, 200 and
300, the two relaxation time scales are due to the fact that at short time t < 250ω−1

pd , the
dynamics of the particle is essentially that of a free particle, and shows a ballistic behaviour
with 〈r2(t)〉 ∝ t2 [8, 16]. During the time t < 250ω−1

pd , the particles have moved a substantial
distance relative to their nearest neighbours and to move farther must escape from the cage
formed by their neighbours [16, 19]. At relatively high temperature, namely lower � value,
the rearrangement of the neighbours is rapid and the ballistic regime directly becomes a
diffusive regime for the time t � 250ω−1

pd with 〈r2(t)〉 ∝ t [16]. In conclusion, for the short

time t < 250ω−1
pd , the particle shows a caged-particle motion with 〈r2(t)〉 ∝ t2, and in the

time t � 250ω−1
pd , the particle motion shows a diffusive behaviour with 〈r2(t)〉 ∝ t .

In figure 2, one can see that with increasing coupling parameter, the slope of the MSD
for time t → ∞, i.e. the self-diffusion coefficient D (equation (4)) is obviously reduced. This
result is related to the effect of point defects on the particle self-diffusion process. We can
establish a simple point defect motion model to explain the mechanism of self-diffusion and
estimate the self-diffusion coefficient in the dusty plasma. In the model, for example with
� = 1000, the whole simulation region is a square with area LxLy = (16 × 16)a2 (here a is
the mean interparticle distance). In figure 3(b), the size of the point defect is assumed to be
(2 × 2)a2. The point defect continuously moves from one location to another, as shown in
figure 4, and the motion of the point defect seems like a random walk motion, so we can assume
that the track of the point defect finally covers the whole of the simulation region of the crystal
during time t = (16a/υ)(16a/2a) = 128a2/υ, where υ is the point defect motion velocity.
If we assume the displacement of every particle to be λa during the point defect motion
time t , then the particle self-diffusion coefficient can be calculated by D = (λa)2/4t for the
two-dimensional dusty plasma. The point defect motion velocity υ can be estimated from the
particle configurations for two moments as is shown in figure 5. The point defects are located at
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positions (x1 = 1.696a, y1 = −2.934a) and (x2 = 1.143a, y2 = −1.898a), respectively, for the
two moments, so the point defect displacement is 	d =

√
(x2 − x1)2 + (y2 − y1)2 = 1.17a

during the time interval 	t = t2 − t1 = 106.2ω−1
pd . Therefore, the point defect motion

velocity υ = 	d/	t = 1.17a
/

106.2ω−1
pd = 0.011a

/
ω−1

pd . From figure 4, we assume the
particle average displacement to be λa = 0.3a during time t , so the self-diffusion coefficient
D = (λa)2/4t = (0.3a)2/(4 × 128a2/υ) ≈ 1.9 × 10−6a2

/
ω−1

pd . This value is in agreement

with the result D ≈ 2.0 × 10−6a2
/
ω−1

pd obtained from MSD (figure 2 and equation (4)) for the
case of � = 1000. From the above, one can see that the point defect plays an important role in
the particle self-diffusion process, and the point defect motion model is effective in estimating
the self-diffusion coefficient for the two-dimensional dusty plasma crystal with point defects.

3. Conclusions

We have investigated the dynamic behaviour of dusty plasma by molecular dynamic simulation.
The velocity autocorrelation functions show that the single-particle motion is strongly coupled
to the collective modes in the dusty plasma when the coupling parameter is high enough,and the
lower frequency peak is due to the coupling between the single-particle motion and transverse
collective modes. With increasing coupling parameter, the particle mean square displacement
and self-diffusion coefficient are obviously reduced. The point defects play an important role
in the particle self-diffusion process. A simple point defect motion model is proposed for
explaining the mechanism of self-diffusion and estimating the self-diffusion coefficient in the
two-dimensional dusty plasma crystal. The value of the self-diffusion coefficient calculated
by using the motion model is in agreement with the result obtained from the particle mean
square displacement for the two-dimensional dusty plasma crystal with � = 1000.
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